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1. Introduction

A broad attention has been devoted in recent years to the construction of gauge field the-

ories on noncommutative manifolds. A crucial test of this construction is the search of

instantonic solutions, especially after the discovery [33] that deforming R4 into the Moyal-

Weyl noncommutative Euclidean space R4
θ regularizes the zero-size singularities of the in-

stanton moduli space (see also [41]). Various other noncommutative geometries have been

considered (see e.g. [10, 5, 11, 28]). They do not always completely fit Connes’ standard

framework of noncommutative geometry [8], thus stimulating attempts of generalizations.

Among the available deformations of R4 there is also the Faddeev-Reshetikhin-Takhtadjan

noncommutative Euclidean space R4
q covariant under SOq(4) [14]. This, as other quantum

group covariant noncommutative spaces (shortly: quantum spaces), is maybe even more

problematic for the formulation [26] of a gauge field theory. One main reason is the lack

of a proper (i.e. cyclic) trace to define gauge invariant observables (action, etc). Another

one is the complicated ?-structure of the differential calculus for real q. Here, leaving these

two issues aside, we formulate and solve the (anti)selfduality equations on it; we omit

mathematical details and proofs, which can be found in the longer paper [21]. This might

contribute to suggest more general formulations of gauge theories on noncommutative man-

ifolds (include quantum spaces) where e.g. gauge transformations, gauge potentials, and

the corresponding field strengths depend not only on coordinates, but also on derivatives

(as suggested e.g. in [12, 3]) and/or possibly on additional noncommuting parameters (see

section 6 below).
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As known, the search and classification [2] of Yang-Mills instantons on R4 is largely

simplified when the latter is promoted to the quaternion algebra H. Following the unde-

formed case, we introduce (section 2) a notion of a q-quaternion as the defining matrix of

a copy of Hq := SUq(2) × R≥ (R≥ denoting the semigroup of nonnegative real numbers)

and reformulate the algebra A of functions on R4
q as a ?-bialgebra C(Hq). The bialgebra

structure encodes the property that the product of two quaternions is a quaternion and is

inherited from the bialgebra of 2× 2 quantum matrices [13, 15, 46, 14] (therefore it differs

from the proposal in [31]). It also turns out that the quantum sphere S4
q of [11] can be re-

garded as a compactification of this ?-algebra. In section 3 we reformulate in q-quaternion

language the SOq(4)-covariant differential calculus, the SOq(4)-covariant q-epsilon tensor

and Hodge map [17, 18] on Ω∗(R4
q). In section 5 we formulate (anti)selfduality equations

and find a large family of solutions A in the form of 1-form valued 2 × 2 matrices both

in the “regular” and in the “singular gauge”. There is a larger indeterminacy than in

the undeformed theory because we are not yet able to formulate and impose the correct

antihermiticity condition on the gauge potential. Among the solutions there are some

distinguished choices that closely resemble (in q-quaternion language) their undeformed

counterparts (instantons and anti-instantons) in su(2) Yang-Mills theory on R4. [The

(still missing) complete gauge theory might however be a deformed u(2) rather than su(2)

Yang-Mills theory.] The projector characterizing the instanton projective module (play-

ing the role of the vector bundle) of [11] in q-quaternion language takes exactly the same

natural form as in the undeformed theory. We also point out where the present model

doesn’t fit the today standard formulation [8] of gauge theory on noncommutative spaces

(some basic notions of which we recall in section 4). In analogy with the undeformed

(and the Nekrasov-Schwarz [33]) case, applying (section 6) the quantum group SOq(4) of

q-deformed rotations one obtains gauge equivalent solutions (by a global gauge transfor-

mation), whereas applying q-deformed dilatations and (the braided group of) q-deformed

translations one finds gauge inequivalent solutions; however this global gauge transforma-

tion depends on new noncommuting parameters playing the role of coordinates of SOq(4),

and the gauge inequivalent solutions depend on the noncommuting “coordinates of the

center” of the (anti)instanton. Finally (section 7), we find first n-instantons solutions in

the “singular” gauge for any integer n; the construction procedure is not yet the deformed

analog of the general ADHM one [2], but rather of the procedure initiated in [44] and de-

veloped in [48], which reduces to the determination of a suitable harmonic scalar potential,

expressed in quaternion language. Then for n = 1, 2 we transform the singular solutions

into “regular” solutions by “singular gauge transformations”, as in the undeformed case (of

course the n = 1 regular instanton solution is again one found in section 5). The solutions

are parametrized by noncommuting parameters playing the role of “sizes” and “coordinates

of the centers” of the (anti)instantons. This indicates that the moduli space of a complete

theory will be a noncommutative manifold. This is similar to what was proposed in [24]

for R4
θ for selfdual deformation parameters θµν .
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2. The q-quaternion bialgebra C (Hq)

We start by recalling how the (undeformed) quaternion ?-algebra H can be formulated in

terms of 2 × 2 matrices: any X ∈ H is given by

X = x1 + x2i + x3j + x4k,

with x ∈ R4 and imaginary i, j, k fulfilling

i2 = j2 = k2 = −1, ijk = −1.

One refers to x1 and to the following three terms as to the ‘real’ and ‘imaginary’ part of X

respectively. Replacing i, j, k by Pauli matrices times the imaginary unit i we can associate

to X a matrix

X ↔ x ≡
(

x1 + x4i x3 + x2i

−x3 + x2i x1 − x4i

)

=:

(

α −γ?

γ α?

)

(where α, γ ∈ C). The quaternionic product becomes represented by matrix multiplication,

and the quaternionic conjugation becomes represented by hermitean conjugation of the

matrix x. Therefore H can be seen also as the subalgebra of M2(C) consisting of all

complex 2 × 2 matrices of this form. Since the determinant of any x is nonnegative,

|x|2 ≡ det(x) = |a|2 + |γ|2 ≥ 0,

any x can be factorized in the form x = T |x|, where T ∈ SU(2) and |x| belongs to the

semigroup R≥ of nonnegative real numbers. Hence any x belongs also to the semigroup

SU(2) × R≥.

We q-deform this just replacing SU(2) by SUq(2) in the algebra of functions of the

matrix elements of x. In other words, we define a q-quaternion just as one introduces the

defining matrix of SUq(2) [45, 46], but without imposing the unit q-determinant condition.

For q ∈ R consider the unital associative ?-algebra A ≡ C(Hq) generated by elements

α, γ?, α?, γ fulfilling the commutation relations

αγ = qγα, αγ? = qγ?α, γα? = qα?γ,

γ?α? = qα?γ?, [α,α?] = (1−q2)γγ? [γ?, γ] = 0.
(2.1)

Introducing the matrix

x ≡
(

x11 x12

x21 x22

)

:=

(

α −qγ?

γ α?

)

(2.2)

we can rewrite these commutation relations as

R̂x1x2 = x1x2R̂ (2.3)

and the conjugation relations as xαβ? = εβγxδγεδα, i.e.

x† = x̄ where ā := εaT ε−1 ∀a ∈ M2. (2.4)

– 3 –
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Here as usual x1 ≡ x⊗C I2, x2 ≡ I2⊗C x (I2 is the 2×2 unit matrix), R̂ is the braid matrix

of Mq(2), GLq(2) and SUq(2)

R̂αβ
γδ = qδα

γ δβ
δ + εαβεγδ, (2.5)

and ε is the corresponding completely antisymmetric tensor

ε ≡ (εαβ) :=

(

0 1

−q 0

)

, ε−1 ≡ (εαβ) = −q−1(εαβ). (2.6)

The decomposition of R̂ in orthogonal projectors reads

R̂ = qPs − q−1Pa, (2.7)

and the q-deformed symmetric, antisymmetric projectors Ps,Pa can be expressed as

Pa
αβ
γδ = − εαβεγδ

q + q−1
, Ps

αβ
γδ = δα

γ δβ
δ +

εαβεγδ

q + q−1
. (2.8)

A := C(Hq) can be naturally endowed with a ?-bialgebra structure (we are not excluding

02 from the spectrum of x), more precisely the above real section of the bialgebra C (Mq(2))

of 2 × 2 quantum matrices [13, 15, 46, 14]. In the sequel we shall write the corresponding

coproduct ∆(xαγ)=xαβ⊗xβγ in the more compact matrix product form

x → ∆(x) = ax (2.9)

where we have renamed x⊗1 → a, 1⊗x → x. Since the coproduct is a ?-algebra map, ∆(x),

or equivalently the matrix product ax of any two matrices a, x with mutually commuting

entries and fulfilling (2.3), (2.4), again fulfills the latter. Therefore we shall call any such

matrix x a q-quaternion, and A := C(Hq) the q-quaternion bialgebra. Note that, according

to this definition, I2 is a q-quaternion, and x is a q-quaternion iff −x is. As well-known,

the socalled ‘q-determinant’ of x

|x|2 ≡ det q(x) := x11x22−qx12x21 = α?α + γ?γ =
1

1+q2
xαα′

xββ′
εαβεα′β′ , (2.10)

is central, manifestly nonnegative-definite and group-like. Therefore in any ?-representation

it will have zero eigenvalue iff x has 02 as an eigenvalue matrix. Replacing (2.5) in (2.3)

we find that the latter is equivalent to

xx̄ = x̄x = |x|2I2. (2.11)

If we extend A = C(Hq) also by the new (central, positive-definite and group-like) gen-

erator |x|−1 (this will exclude x = 02 from the spectrum), the matrix x becomes invertible

and we obtain even a Hopf ?-algebra with antipode S defined by

Sx = x−1 =
x̄

|x|2 , S|x|−1 = |x|. (2.12)
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The matrix elements of T := x
|x| fulfill the ‘RTT’ [14] relations (2.3) and

T † = T−1 = T , det q(T ) = 1, (2.13)

namely generate C (SUq(2)) [45, 46] as a quotient subalgebra. Therefore in this case the

xαα′
generate the (Hopf) ?-algebra C (SUq(2)×GL+(1)) of functions on the “quantum

group SUq(2)×GL+(1) of non-vanishing q-quaternions” [a real section of the Hopf algebra

C
(
GL+

q (2)
)
], in analogy with the q = 1 case.

One can easily verify that as a ?-algebra A := C(Hq) coincides with the algebra

of functions on the SOq(4)-covariant quantum Euclidean Space R4
q of [14]. We identify

the present qx11, x12,−qx21, x22 with the generators x1, x2, x3, x4 of [14] (in their original

indices convention) or with the generators x−2, x−1, x1, x2 in the convention of ref. [34]

(which has been heavily used by the author).

The algebra and the ?-structure are covariant under, i.e. preserved by, matrix multi-

plication

x → ax b

by the defining matrices a, b of two copies SUq(2), SUq(2)
′ of the special unitary quantum

group, or of two copies Hq, H′
q of the quaternion quantum group, if the entries of a, b

commute with each other and with the entries of x. In other words they are covariant

under the (mixed left-right) coactions of SUq(2) ⊗ SUq(2)
′ = Spinq(4) and of Hq ⊗ H′

q.

This follows from the fact that the twofold coproduct ∆(2)(x) = axb,

∆(2)(xαα′
) = aαβbβ′α′ ⊗ xββ′

, i.e. x
∆(2)

−→ ax b, (2.14)

is a ?-homomorphism, or equivalently both the the left coaction x → ax and the right one

x → x b are. In terms of xi this takes the form

∆(2)(xi) = Ti
j ⊗ xj, Ti

j := Bi
αα′aαβbβ′α′

B−1ββ′

j , (2.15)

where B ≡ (Ba
αα′) is the (diagonal and invertible) matrix entering the linear transformation

xa = Ba
αα′xαα′

. Relation (2.15)1 has the same form as the left coaction of ref. [14] of the

quantum group SOq(4) [and of its extension S̃Oq(4) := SOq(4)×GL+(1), the quantum

group of rotations and scale transformations in 4 dimensions] on R4
q. This is no formal

coincidence: the Ti
j fulfill the RTT commutation relations and ?-conjugation relations

R̂T1T2 = T1T2R̂ , Ti
j
? = gjj′Ti′

j′gi′i (2.16)

and in addition gii′T
i
jT

i′

j′ = gjj′1 if the central element |a||b| is 1 (here R̂ and gab =

B−1αα′

a B−1ββ′

b εαβεα′β′ are the braid matrix and the metric matrix of SOq(4)). These

are respectively the defining relations of S̃Oq(4) and of the compact quantum subgroup

SOq(4) [14]. We have thus an explicit realization of the equivalences

SOq(4) = SUq(2)×SUq(2)
′/Z2, S̃Oq(4) = Hq×H′

q/GL(1).

The quotient over Z2 is due to the invariance of Ti
j under (a, b) → (−a,−b).
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As we shall recall in section 6, the commutation relations are also invariant under the

braided group of translations [30, 32] R4
q, which is the q-deformed version of the group of

translations R4; the role of composition of translations is played by the socalled braided

coaddition. They are in fact covariant under the coaction of the full inhomogenous ex-

tension ˜ISOq(4) [40] of S̃Oq(4) (or quantum Euclidean group in 4 dimensions), which

includes q-deformed translations together with scale changes and rotations ( ˜ISOq(4) can

be obtained also by “bosonization” of R4
q [30]).

Comparison and links with other formulations. A matrix version of the 4-dim

quantum Euclidean space (with no interpretation in terms of q-deformed quaternions) was

proposed also in [31]. However, the ?-relations and the SOq(4)-coaction are different, i.e.

cannot be put both in the form (2.1), (2.14), even by a relabelling of the generators.

The slightly extended ?-algebra Aext obtained by adding as generators the central

elements 1/
(

1 + |x|2

ρ2

)

, ρ ∈ R+, contains the ?-algebra of functions on the quantum 4-

sphere S4
q proposed in [11] (as a ‘suspension’ of the algebra of a quantum 3-sphere S3

q ).

Define

α′ = α? 2
√

2

1+2|x|2 eia, β′ = γ? 2
√

2

1+2|x|2 eib, z =
1−2|x|2
1+2|x|2 , (2.17)

where α, γ, α?, γ? fulfill (2.1) and eia, eib ∈ U(1) are possible phase factors. Then α′, β′, z

fulfill the defining relation (1) of the C?-algebra considered in ref. [11] (where these elements

are respectively denoted as α, β, z), in particular

α′α′? + β′β′? + z2 = 1, (2.18)

and the invertible function z(|x|) spans [−1, 1[, i.e. all the spectrum of z except the eigen-

value z = 1, as |x| spans all its spectrum [0,∞[. Viceversa, starting from the latter and

enlarging it so that it contains the element (1+z)/2(1−z) =: |x|2 then inverting the above

formulae one obtains elements α, γ, α?γ? fulfilling our defining relations (2.1).

The redefinitions (2.17) have exactly the form of a stereographic projection of R4 on a

sphere S4 of unit radius (the square radius is x ·x = 2|x|2): S4 is the sphere centered at the

origin and R4 the subspace z = 0 immersing both in a R5 with coordinates defined by X ≡
(Re(α′), Im(α′), Re(β′), Im(β′), z). In the commutative theory adjoining the missing point

X = (0, 0, 0, 0, 1) of S4 amounts to adding to R4 the point at infinity, i.e. to compactifying

R4 to S4. We can thus regard the transition from our algebra to the one considered in

ref. [11] as a compactification of R4
q into their S4

q .

3. Other preliminaries

The SOq(4)-covariant differential calculus [6] (d,Ω∗) on R4
q ∼ Hq is obtained impos-

ing covariant homogeneous bilinear commutation relations (3.1) between the xa and the

differentials ξb := dxb. Partial derivatives are introduced through the decomposition

d = ξa∂a = ξαα′
∂αα′ of the (SOq(4)-invariant) exterior derivative. All other commutation

relations are derived by consistency with nilpotence and the Leibniz rule. Beside (2.3), we

– 6 –
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have

xαα′
ξββ′

= R̂αβ
γδ R̂α′β′

γ′δ′ ξ
γγ′

xδδ′ , (3.1)

Ps
αβ
γδ Ps

α′β′

γ′δ′ ξ
γγ′

ξδδ′ =0=(ξεξT )γδεγδ, (3.2)

∂αα′∂ββ′ = R̂δγ
βαR̂−1δ′γ′

β′α′∂γγ′∂δδ′ , (3.3)

∂αα′xββ′
=δβ

αδβ′

α′ +R̂βδ
αγR̂β′δ′

α′γ′x
γγ′

∂δδ′ , (3.4)

∂αα′ξββ′
= R̂−1βδ

αγR̂−1β′δ′

α′γ′ξ
γγ′

∂δδ′ . (3.5)

[An alternative SOq(4)-covariant differential calculus (d̂, Ω̂∗) is obtained replacing R̂ by R̂−1

in (3.1- 3.5)]. The ξi transform under SOq(4) exactly as the xi, the ∂i in the contragradient

corepresentation. In terms of xi, ∂j one can build a special unitary element λ such that

λxi = q−1xiλ, λ∂i = q∂iλ, λξi = ξiλ. (3.6)

We introduce the notation ∂αα′
:= εαβεα′β′

∂ββ′ , ∂ ≡ (∂αα′
). The ∂αα′

fulfill the same

commutation relations (among themselves) as the xαα′
, and transform in the same way

under the SOq(4) coaction. As a consequence, the Laplacian ¤ := ghk∂k∂h = ∂αα′
∂αα′ is

SOq(4)-invariant and commutes with the ∂ββ′ , and

∂∂̄ = ∂̄∂ = I2|∂|2 ≡ I2
1

1+q2
¤. (3.7)

From (3.4), (3.5) it follows

q2∂|x|2 =x+q4|x|2∂, ∂
1

|x|2 =−q−4x

|x|4 +
q−2

|x|2 ∂, |∂|2 1

|x|2 =
q−4

|x|2 |∂|
2− q−6

|x|4 x·∂ (3.8)

Since the rhs of the latter formula applied to 1 gives zero, 1/|x|2 is harmonic, as in the

undeformed case.

We denote as DC∗ (“differential calculus algebra”) the algebra (over C) generated by

1, xi, ξi, ∂i, λ
±1; the elements are differential-operator-valued forms. We also denote as

Ω̃∗ the unital subalgebra generated by ξi, xi, λ±1 , as Ω∗ (algebra of differential forms) the

unital subalgebra generated by ξi, xi, as Ω∗
S the unital subalgebra generated by Tαα′

, dTαα′
,

as
∧∗ (algebra of exterior forms) the unital subalgebra generated by ξi.

As usual we introduce in these algebras a grading \ ∈ N given by the degree in ξi,

and denote as DCp,Ωp, etc., their components with \ = p. Each of these components is

a bimodule of dimension
(4
p

)
w.r.t. to its 0-component. For instance, since by definition

Ω0 = A, Ωp is a
(4
p

)
-dimensional A-bimodule; similarly, DCp is a

(4
p

)
-dimensional H-

bimodule, where H := DC0 (the Heisenberg algebra), generated by the xi, ∂i, λ
±1. Any

∧p carries an irreducible corepresentation of SOq(4). In particular, as
(4
4

)
= 1 all exterior

4-forms are SOq(4)-invariant and proportional to d4x := ξ1ξ2ξ3ξ4.

All this is exactly as in the case q = 1, except that as a C(SUq(2))-bimodule Ωp
S is

(4
p

)
-dimensional when q 6=1 and

(3
p

)
-dimensional when q=1.

– 7 –
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The whole set of commutation relations (2.3), (3.1- 3.5) is [7] invariant under the

replacement xαα′
/|x|2q2(1−q2) → ∂αα′

. As a corollary, on Ω∗ one can realize the action of

the exterior derivative as the (graded) commutator

dωp = [−θ, ωp} := −θωp + (−)pωpθ, ωp ∈ Ωp (3.9)

with the special SOq(4)-invariant 1-form [43] (the ‘Dirac Operator’, in Connes’ [8] parlance)

θ := (d|x|2)|x|−2 1

q2 − 1
=

q−2

q2 − 1
ξαα′ xββ′

|x|2 εαβεα′β′ . (3.10)

θ is closed and singular in the q → 1 limit. Applying d to (2.11) we find

xξ̄ + ξx̄ = (q2−1)θ|x|2I2, x̄ξ + ξ̄x = (q2−1)θ|x|2I2. (3.11)

Relation (3.1) implies |x|2ξi = q2ξi|x|2, which we supplement with the compatible ones

q|x|−1ξi = ξi|x|−1, ⇒ q |x|−1 θ = θ |x|−1. (3.12)

By a straightforward computation one also finds

dTαα′
= q−1ξαα′ 1

|x| + (q−1−1)θTαα′
. (3.13)

By (2.14) the 1-form-valued 2 × 2 matrices (dT )T , (dT )T are manifestly invariant under

respectively the right and left coaction of SUq(2), or equivalently the SUq(2)
′ and the

SUq(2) part of SOq(4) coaction. Setting Q := −ε−1εT one finds

tr[Q(dT )T ] = tr[Q−1(dT )T ] = (q−1)(q−q−2)θ;

from (3.10) we see that only in the q → 1 limit these traces vanish. That’s why for generic

q 6= 1 the four matrix elements of either (dT )T or (dT )T are independent, and make up

alternative bases for both Ω∗
S and Ω∗.

Actually, one can check (we will give details in [22]) that (d,Ω∗) coincides with the

bicovariant differential calculus on Mq(2), GLq(2) [38, 39], and (d,Ω∗
S) coincides with the

Woronowicz 4D- bicovariant one [47, 37] on C(SUq(2)).

One major problem in the present q ∈ R case is that the calculus is not real: there is

no ?-structure such that d(f?) = (df)?, nor is there a ?-structure ? : Ω∗ → Ω∗. Formally,

a ?-structure would map the commutation relations of (d,Ω∗) into the ones of (d̂, Ω̂∗), and

conversely. At least, there is a ?-structure [35]

? : DC∗ → DC∗

having the desired commutative limit (the ?-structure of the De Rham calculus on R4),

but a rather nonlinear character (incidentally, the latter has been recently [19] recast in a

much more suggestive form), in other words objects of the second calculus can be realized

nonlinearly in terms of objects of the first (and conversely).
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The Hodge map is a SOq(4)-covariant, A-bilinear map ∗ : Ω̃p → Ω̃4−p [18] such that

∗2 = id , defined by

∗(ξi1 . . . ξip) = cp ξip+1 . . . ξi4εi4...ip+1
i1...ipλ2p−4,

where εhijk ≡ q-epsilon tensor [18, 17] and cp are suitable normalization factors. Actually

this extends [18] to a H-bilinear map ∗ : DCp → DC4−p with the same features. For p = 2

λ-powers disappear and one even gets maps ∗ : Ω2 → Ω2, ∗ : DC2 → DC2. The previous

equation becomes
∗fαβ = fαβ ∗f ′α′β′

= −f ′α′β′
(3.14)

in terms of the “selfdual exterior 2-forms”

fαβ := Ps
αβ
γδ εγ′δ′ξ

γγ′
ξδδ′ = εγ′δ′ξ

αγ′
ξβδ′ = (ξεξT )αβ (3.15)

and of the “antiselfdual exterior 2-forms”

f ′α′β′
:= Ps

α′β′

γ′δ′ εγδξ
γγ′

ξδδ′ = εαβξαα′
ξββ′

= (ξT εξ)α
′β′

. (3.15)′

Instead of fαβ (resp. f ′α′β′
) we shall also adopt the matrix elements of ξξ̄ (resp. ξ̄ξ),

because

(ξξ̄)αβ = fαγεγβ, (ξ̄ξ)α
′β′

= εα′γ′
f ′γ′β′

. (3.16)

As when q = 1, (only) three out of the four matrix elements fαβ (resp. f ′α′β′
) are in-

dependent, because (3.2) implies εαβfαβ = 0 = εα′β′f ′α′β′
. Together, these fαβ, f ′α′β′

form a basis of the 6-dimensional A-bimodule (resp. H-bimodule) Ω2 (resp. DC2). Using

relations (3.2) and (2.5) one easily derives the following relations

xαα′
fβγ = q(R̂12R̂23)

αβγ
λµν fλµxνα′

, (3.17)

∂αα′
fβγ = q−1(R̂12R̂23)

αβγ
λµν fλµ∂να′

. (3.18)

The second is obtained from the first and Remark 1. In (3.15)′ and in the sequel we label a

formula regarding antiselfdual 2-forms adding a prime to the label of its selfdual counterpart

and omit it, when it can be obtained from the former by the obvious replacements. As

another example,

xαα′
f ′β′γ′

= q(R̂12R̂23)
α′β′γ′

λ′µ′ν′ f
′λ′µ′

xαν′
. (3.17)′

From the previous three formulae and (3.18)′ it follows that Ω2 (resp. DC2) splits into the

direct sum of A- (resp. H-) bimodules

Ω2 = Ω̌2 ⊕ Ω̌2′ (resp. DC2 = ĎC2 ⊕ ĎC2′) (3.19)

of the eigenspaces of ∗ with eigenvalues 1,−1 respectively. In [21] we prove that

ω2 ω′
2 = ω′

2 ω2 = 0 (3.20)

for any ω2 ∈ Ω̌2, ω′
2 ∈ Ω̌2′, (resp. ω2 ∈ ĎC2

, ω′
2 ∈ ĎC2′)
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The 2-forms (ξξ̄)αβ , (ξ̄ξ)α
′β′

are exact. 1-form-valued matrices a, a′ such that

d a = ξξ̄, d a′ = ξ̄ξ (3.21)

are clearly defined up to d-exact terms. One can choose

aκ := −ξx̄ + κ θ|x|2 I2 (3.22)

with complex κ. If κ 6= κ0 := q2(q2 − 1)/(q2 +1) the four matrix elements of aκ are

all independent and make up an alternative basis for Ω1; they belong to the (3, 1) ⊕
(1, 1)-dimensional (reducible) corepresentation of SUq(2)×SU ′

q(2). (And similarly for â′κ).

Whereas there are only three independent

aκ0
αβ = Ps

αλ
γδ (ξεxT )γδεβδ, (3.23)

because aκ0
αβ(εεT )βα = 0; the latter belong to the (3,1) irreducible corepresentation of

SUq(2) × SU ′
q(2). In the q = 1 limit (3.23) becomes the familiar

aκ0
αβ = −

(

ξε−1xT
)(αλ)

ελβ = −{Im(ξ x̄)}αβ ,

where (αλ) denotes symmetrization w.r.t. α, λ, and Im the imaginary part. Another

peculiar choice is κ+ = q−1, which gives aκ+ = −q(dT )T |x|2, whence the simple change

T [(dT )T ]T = T (dT ) (3.24)

under the ‘similarity’ transformation T , as when q = 1. Since (ξ̄ξ)α
′β′

belongs to Ω̌2′, which

is a A-bimodule, we also find [using (3.12) and (3.11)]

T ξ̄ξT = ξξ̄q2 + (q−2−q2)ξx̄θ ∈ Ω̌2′. (3.25)

4. Formulations of NC gauge theories

We recall some minimal common elements in the formulations of U(n) gauge theories on

commutative as well as noncommutative spaces [8, 29] (see also [27, 16]). We denote by A
the ‘?-algebra of functions on the noncommutative space’ under consideration, by (d,Ω∗)

a differential calculus on A, real in the sense that d(f?) = (df)?. In U(n) gauge theory the

gauge transformations U are unitary A-valued n × n matrices, U ∈Mn(A) ≡ Mn(C) ⊗C A
with U † = U−1. The gauge potential A ≡ (Aα̇

β̇
) is an antihermitean 1-form-valued n × n

matrix, A ∈ Mn(Ω1(A)) with A† = −A. The associated field strength F ∈ Mn(Ω2) and

covariant derivative D : Mn(Ωp) → Mn(Ωp+1) are defined as usual by

F := dA + AA Dωp := dωp + [A,ωp}, (4.1)

and are therefore hermitean, in the sense F † = F , D(f †) = (Df)†. At the right-hand

side the product AA has to be understood both as a (row by column) matrix product

and as a wedge product. Even for n = 1 (electromagnetism) AA 6= 0, contrary to the
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commutative case. The Bianchi identity DF = dF + [A,F ] = 0 is automatically satisfied

and the Yang-Mills equation reads as usual D∗F = 0. Because of the Bianchi identity,

in a 4D Riemannian geometry endowed with a Hodge map ∗ the latter is automatically

satisfied by any solution of the (anti)self-duality equations

∗F = ±F. (4.2)

If Ω2 splits as in (3.19) then F is uniquely decomposed in a selfdual and an antiselfdual

part,

F = F+ + F−. (4.3)

The Bianchi identity, the Yang-Mills equation, the (anti)self-duality equations, the

flatness condition F = 0 are preserved by gauge transformations

AU = U−1(AU + dU), ⇒ FU = U−1FU. (4.4)

As usual, A = U−1dU implies F = 0. If the exterior derivative can be realized as the graded

commutator (3.9) with a special 1-form [8, 47, 29] −θ, then introducing the 1-form-valued

matrix B := −θIn + A one finds that

F = BB, D = [B, · } (4.5)

and Bianchi identity is now even more trivial. In Connes’ noncommutative geometry −θ

is the ’Dirac operator’, which has to fulfill more stringent requirements [8].

Up to normalization factors, the gauge invariant ‘action’ S and ‘Pontryagin index’ (or

‘second Chern number’) Q are defined by

S = Tr(F ∗F ), Q = Tr(FF ) (4.6)

where Tr stands for a positive-definite trace combining the n × n-matrix trace with the

integral over the noncommutative manifold (as such, Tr has to fulfill the cyclic property). If

integration
∫

fulfills itself the cyclic property then this is obtained by simply choosing Tr =
∫

tr, where tr stands for the ordinary matrix trace. If, as in the case under discussion, (3.20)

holds, S,Q respectively split into the sum, difference of two nonnegative contributions:

S = Tr(F+∗F+)+Tr(F−∗F−), Q = Tr(F+ ∗F+) − Tr(F− ∗F−). (4.7)

As in the commutative case, these relations imply S ≥ |Q| ≥ 0.

In commutative geometry the socalled Serre-Swan theorem [42, 9] states that vector

bundles over a compact manifold coincide with finitely generated projective modules E
over A. The gauge connection A of a gauge group (fiber bundle) acting on a vector bundle

is expressed in terms of the projector P characterizing the projective module. Therefore

these projectors can be used to completely determine the connections. In Connes’ standard

approach [8] to noncommutative geometry the finitely generated projective modules are the

primary objects to define and develop the gauge theory. The topological properties of the

connections can be classified in terms of topological invariants (Chern numbers), and the
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latter can be computed directly in terms of characters of P (Chern-Connes characters),

in particular Q can be computed in terms of the second Chern-Connes character, when

Connes’ formulation of noncommutative geometry applies.

In the present A ≡ C(R4
q) = C(Hq) case there are 2 main problems preventing the

application of this formulation of gauge theories:

i) Integration over R4
q fulfills a deformed cyclic property [43].

ii) d(f?) 6= (df)?, and there is no ?-structure ? : Ω∗ → Ω∗, but (as mentioned in section 3)

only a ?-structure ? : DC∗ → DC∗ [35], with a nonlinear character.

On the basis of our results [19] we hope that both problems could be solved

i) allowing for DC1-valued A (⇒ DC2-valued F ’s), and/or

ii) realizing Tr(·) by in the form Tr(·):=
∫

tr(W ·), with W some suitable positive definite

H-valued (i.e. pseudo-differential-operator-valued) n×n matrix (this implies a change

in the hermitean conjugation of differential operators), or even a more general form.

5. q-deformed SU(2) instanton

We look for A ∈ M2(Ω
1) solutions of the (anti)self-duality equations (4.2) virtually yielding

a finite action functional (4.6). Among them we expect deformations of the (multi)instanton

solutions of su(2) Yang-Mills theory on the “commutative” R4. We first recall the instanton

solution of Belavin et al. [4], which we write down both in t’ Hooft [44] and in ADHM [2]

quaternion notation:

A = dxi σa ηa
ijx

j 1

ρ2 + r2/2
︸ ︷︷ ︸

Aa
i

= −Im

{

ξ
x̄

|x|2
}

1

1 + ρ2 1
|x|2

= −(dT )T
1

1 + ρ2 1
|x|2

, (5.1)

F = ξξ̄ ρ2 1

(|x|2 + ρ2)2
.

Here r2 := x ·x = 2|x|2, σa are the Pauli matrices, ηa
ij are the so-called t’ Hooft η-symbols,

ρ is the size of the instanton (here centered at the origin). The third equality is based on

the identity

ξ
x̄

|x|2 = (dT )T + I2
d|x|2
2|x|2

and the observation that the first and second term at the rhs are respectively antihermitean

and hermitean, i.e. the imaginary and the real part of the quaternion.

In terms of the modified gauge potential B := A−θI2 a natural Ansatz for the deformed

instanton solution in the ‘regular gauge’ is (in matrix notation)

B := A − θI2 = ξ
x̄

|x|2 l + θ I2 m, (5.2)
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where l,m are functions of x only through |x|. For any f(x) we shall denote fq(x) := f(qx).

Using θ2 = 0 and (3.12), (3.11), (3.9), (2.11) we find

F = B2 = ξξ̄(m−l) lq
q−2

|x|2 + ξθx̄
[
(q2−1)lql+lqm−q2mql

] q−2

|x|2 .

A sufficient condition for F to be selfdual is that the expression in the square bracket

vanishes. Setting h := m/l this amounts to the equation q2hq −h = (q2−1), which is

solved by m =
[
1 + ρ̄2/|x|2

]
l, where ρ̄2 is a constant, or might be a further generator of

the algebra, commuting with θ. Replacing in the expression for A,F , we find a family of

solutions

Al = q(dT )T l + θI2

{

1+
[

q+ρ̄2 1
|x|2

]

l
}

, Fl = ξξ̄ 1
|x|2

ρ̄2 q−2

|x|2
lql, (5.3)

parametrized by the function l(|x|). This large (compared to the undeformed case) freedom

in the choice of the solution is due to the fact that we have not yet imposed on A the

antihermiticity condition. Actually, we don’t know yet what the ‘right’ antihermiticity

condition is: in fact, for no l is A antihermitean w.r.t. the ?-structure [35] mentioned in

section 3. In any case, one should check that for the final A the resulting F decreases faster

than |x|−2 at infinity, so that the resulting action functional (4.6) is finite.

The second term in (5.3)1 is proportional to d|x|2; in the commutative limit q = 1 it is

a connection associated to the noncompact factor GL+(1) of H. In this limit the antiher-

miticity condition on A amounts to the vanishing of this term and completely determines

the solution. It factors GL+(1) out of the gauge group to leave a pure SU(2) gauge theory.

In the q-deformed case, as we still ignore what the ‘right’ ?- (i.e. Hermitean) structure

could be, it could well happen that w.r.t. the latter the second term in (5.3)1 contains

also a antihermitean (i.e. imaginary) part, which would be the connection associated to an

additional U(1) factor of the gauge group and which could not be consistently disposed of.

In the latter case the associated gauge theory would necessarily be a deformed U(2) one.

For the moment we cannot solve the ambiguity, and content ourselves with writing the

solution for a couple of selected choices of l. If we choose l so that the second term in (5.3)1
vanishes and set ρ2 = ρ̄2q−1 we obtain

A = −(dT )T 1
1+ρ2 1

|x|2
F = q−1ξξ̄ 1

q2|x|2+ρ2 ρ2 1
|x|2+ρ2 . (5.4)

This has manifestly the desired q → 1 limit (5.1). The second choice,

l = −1+q2

1+q4
1

1+ρ̃2 1
|x|2

ρ̃2 := 1+q2

1+q4 ρ̄2,

is designed in order that A is proportional to the aκ0 of (3.23), so that Aαβ span the (3,1)

dimensional, irreducible corepresentation of SUq(2) × SU ′
q(2). The result is:

Ã = −1+q2

1+q4 aκ0
1

|x|2+ρ̃2 F̃ = 1+q2

1+q4 ξξ̄ 1
q2|x|2+ρ̃2 ρ̃2 1

|x|2+ρ̃2 . (5.5)

This also has the desired q → 1 limit (5.1). If ρ̄2 6= 0, in both cases FF is regular

everywhere and decreases as 1/|x|8 as x → ∞, therefore it virtually will yield finite action

S and Pontryagin index Q upon integration.
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As in the undeformed case, to make the determination of multi-instanton solutions

easier it is useful to go to the “singular gauge”. Note that as in the q = 1 case T = x/|x|
is unitary and formally not continuous at x = 0, so it can play the role of a ‘singular

gauge transformation’. In fact A can be obtained through the gauge transformation A =

T (ÂT + dT ) from the “singular” gauge potential

Â = TdT
1

1 + |x|2 1
ρ2

(5.6)

(3.13)
= −

[

q−1ξ̄
x

|x|2 − q−3

q+1
ξαα′ xββ′

|x|2 εαβεα′β′

]

1

1 + |x|2 1
ρ2

(5.7)

F̂ = Tq−1ξξ̄
1

q2|x|2 + ρ2
ρ2 1

|x|2 + ρ2
T, (5.8)

which is the analog of the instanton solution in the “singular gauge” found by ’t Hooft

in [44]. Â is singular in that it has a pole in |x| = 0. More generally, the generic so-

lution (5.3) can be obtained through the gauge transformation Al = T (ÂlT + dT ) from

a singular solution Âl. The latter can be obtained also by starting from an Ansatz like

B̂ = ξ̄ x
|x|2

l̂+θ I2 m̂, instead of (5.2), and imposing that the ξ̄ξ and the ξ̄θx term in F̂ = B̂2

appear in a combination proportional to (3.25).

A straightforward computation by means of (3.8) shows that Â can be expressed also

in the form

Â = (D̂φ)φ−1, (5.9)

where D̂ is the first-order-differential-operator-valued 2 × 2 matrix obtained from the ex-

pression in the square bracket in (5.7) by the replacement xαα′
/|x|2 → q4∂αα′

,

D̂ := q3ξ̄∂ − q

q+1
dI2, (5.10)

(for simplicity we are here assuming that ρ2 commutes with ξ∂) and φ is the harmonic

potential

φ := 1 + ρ2 1

|x|2 , ¤φ = 0.

This is the analog of what happens in the classical case.

The anti-instanton solution is obtained just by converting unbarred into barred

matrices, and conversely, as in the q = 1 case. For instance, from (5.4) we obtain the

anti-instanton solution in the regular gauge

A′ = −(dT )T 1
1+ρ2 1

|x|2

, F ′ = q−1ξ̄ξ 1
|x|2+ρ2 ρ2 1

q2|x|2+ρ2 , (5.11)

and for the one in the singular gauge Â′ = (D̂′φ)φ−1, where

D̂′ := q3ξ∂̄ − q

q+1
dI2. (5.12)
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Recovering the instanton projective module of [11]. In commutative geometry the

instanton projective module E over A and the associated gauge connection can be most

easily obtained using the quaternion formalism, in the way described e.g. in ref. [1]. H ∼ R4

can be compactified as P 1(H) ∼ S4. Let (w, x) ∈ H2 be homogenous coordinates of the

latter, and choose w = I2 on the chart H ∼ R4. The element u ∈ H2 defined by

u ≡
(

u1

u2

)

=

(

I2
ρx
|x|2

)(

1+
ρ2

|x|2
)−1/2

(5.13)

fulfills u†u = I21, and the 4×2 A-valued matrix u has only three independent components.

Therefore the 4 × 4 A-valued matrix

P := uu† =

(

I2
ρx̄
|x|2

ρx
|x|2

ρ2

|x|2
I2

)

1

1+ ρ2

|x|2

(5.14)

is a self-adjoint three-dimensional projector. It is the projector associated in the Serre-

Swan theorem correspondence to the gauge connection (5.6), by the formula Â = u†du.

The associated projective module E is embedded in the free module A16 seen as M4(A),

and is obtained from the latter as E = PM4(A).

In the present q-deformed setting we immediately check that the element u ∈ H2
q

defined by (5.13) fulfills u†u = I21 again, so that the 4 × 2 A-valued matrix P defined

by (5.14) is hermitean and idempotent, and has only 3 independent components. Therefore,

it defines the ‘instanton projective module’ E = PM4(A) also in the q-deformed case. One

can easily verify that P reduces to the hermitean idempotent e of [11] if one chooses

the instanton size as ρ = 1/
√

2 and performs the change of generators (2.17). Therefore,

interpreting the model [11] as a compactification to S4
q of ours, we can use all the results [11]

about the Chern-Connes classes of e.

Unfortunately in the q-deformed case it is no more true that Â = u†du, essentially

because the |x|-dependent global factor multiplying the matrix at the rhs(5.14) does not

commute with the 1-forms of the present calculus (|x|ξi = qξi|x|).

6. Changing size and center of the (anti)instanton

Applying the S̃Oq(4) coaction (2.14) to the instanton gauge potentials (5.3) we find

Al(ξ, x)
∆(2)

−→ aAl(ξ|c|, x|c|)a−1, Fl(ξ, x)
∆(2)

−→ aFl(ξ|c|, x|c|)a−1. (6.1)

where |c|2 := |a|2|b|2. The result is the same also if we consider |c|2 as an independent

parameter and choose a, b with |a|= |b|=1. In particular, on (5.4)

A
∆(2)

−→ −a (dT )T
1

1+ρ′2 1
|x|2

a−1, F
∆(2)

−→ a ξξ̄
q−1ρ′2

q2|x|2+ρ′2
1

|x|2+ρ′2
a−1, (6.2)

where we have set ρ′2 := ρ2|c|−2. These gauge potentials are again solutions of the self-

duality equation, since the latter is covariant under the S̃Oq(4) coaction. The result of
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the SOq(4) coaction (|a| = |b| = 1) can be reabsorbed into a (global) gauge transforma-

tion (4.4), with U = a (and similarly U = b̄ for the anti-instanton gauge potentials), i.e. is

a gauge equivalent solution. Note that we are thus introducing gauge transformations de-

pending on the additional noncommuting parameters a, b. A full S̃Oq(4) coaction (|c| 6= 1)

instead involves also a change of the size of the instanton, and gives an inequivalent solution.

We can thus obtain any size starting from the instanton with unit size.

Having built an (anti)instanton “centered at the origin” with arbitrary size one would

like first to translate the latter in space to another point y, then to construct n-instanton

solutions “centered at points yµ”, µ = 1, 2, . . . , n. The appropriate framework is to replace

tensor products ⊗ by braided tensor products ⊗ and apply the braided coaddition [32] to

the covectors x. This gives new (i.e. gauge inequivalent) solutions. The braided coaddi-

tion [32] of the coordinates x reads ∆(x) = x⊗1+1⊗x ≡ x−y, where we have renamed

x := x⊗1, y :=−1⊗x. It follows yȳ = ȳy = I2|y|2. Out of the two possible braidings we

choose the following one:

yαα′
xββ′

= R̂αβ
γδ R̂α′β′

γ′δ′ x
γγ′

yδδ′ ,

∂αα′yββ′
= R̂βδ

αγR̂β′δ′

α′γ′y
γγ′

∂δδ′ , (6.3)

yαα′
ξββ′

= R̂αβ
γδ R̂α′β′

γ′δ′ ξ
γγ′

yδδ′ .

We also enlarge the algebra by introducing further generators 1/|y|, 1/|z| (where z := x−y)

fulfilling relations

qγξi = ξiγ, for γ = 1
|x| ,

1
|y| ,

1
|z|

yi 1
|x| = q

|x|y
i, xi q

|y| = 1
|y|x

i,

1
|y|

1
|x| = q

|x|
1
|y| ,

1
|z|

xi

|x|2
= xi

|x|2
q
|z|+(1−q) zi

|z|3
, q

|z|
yi

|y|2
= yi

|y|2
1
|z|+(1−q) zi

|z|3
.

(6.4)

These are (the only) consistent extensions of the previous relations to the inverse square

root of |z|2, |x|2, |y|2 having the desired, commutative q → 1 limit.

Under the replacement x → x − y (i.e. under ∆) the differential calculus is invariant,

implying that solutions are mapped into solutions. Therefore the instanton solution with

“shifted” center y will read in the regular gauge

A = −(dT )T
1

1 + ρ2 1
|x−y|2

F = q−1ξξ̄
1

q2|x − y|2 + ρ2
ρ2 1

|x − y|2 + ρ2
. (6.5)

and in the singular gauge

Â = (D̂φ)φ−1,

φ := 1 + ρ2 1

|x − y|2 , (6.6)

F̂ = Tq−1ξξ̄T
1

q2|x − y|2 + ρ2
ρ2 1

|x − y|2 + ρ2
.
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7. Multi-instanton solutions

On the basis of the latter and of the q = 1 results [44, 48], we first look for n-instanton

solutions of the self-duality equation in the “singular gauge” in the form (5.9). Beside the

coordinates xi ≡ −yi
0 we introduce n other coordinates yi

µ, µ = 1, 2, . . . , n generating as

many R4
q and braided to each other:

yµȳµ = ȳµyµ = I2|yµ|2

yαα′

ν yββ′

µ = R̂αβ
γδ R̂α′β′

γ′δ′ y
γγ′

µ yδδ′

ν (7.1)

with µ < ν and no sum over repeated µ. We shall call An the larger algebra generated by

the yi
µ’s and by parameters ρµ, µ = 1, . . . , n fulfilling the commutation relations

ρ2
νρ

2
µ = q2 ρ2

µρ2
ν , ν < µ,

ρ2
νy

i
µ = yi

µρ2
ν

{
q−2 ν < µ,

1, ν ≥ µ.
(7.2)

We shall also enlarge An to the extended Heisenberg algebra Hn and extended algebra of

differential forms Ω∗(An) by adding as generators the ∂i and the ξi respectively, and to

the extended differential calculus algebra DC(An) by adding as generators both the ξi, ∂i,

with cross commutation relations

ρ2
µξαα′

= ξαα′
ρ2

µ, ∂αα′ρ2
µ = ρ2

µ∂αα′ ,

yαα′

µ ξββ′
= R̂αβ

γδ R̂α′β′

γ′δ′ ξ
γγ′

yδδ′
µ , ∂αα′yββ′

µ = R̂βδ
αγR̂β′δ′

α′γ′y
γγ′

µ ∂δδ′ ,
(7.3)

Note that the first relations, together with the decomposition d = ξi∂i, imply

d ρ2
µ = ρ2

µd. (7.4)

Also, from these relations it is evident that Ω̌2(An), Ω̌2′(An) are An-bimodules (resp.

ĎC2
(An), ĎC2′(An) are Hn-bimodules). Let us introduce the short-hand notation

zαα′

µ := xαα′ − vαα′

µ , vαα′

µ :=

µ
∑

ν=1

yαα′

ν , µ = 1, 2, . . . , n;

vαα′

µ will play the role of coordinates of the center of the µ-th instanton. It is easy to

check from (7.1) that these new n sets of variables generate as many copies of the quantum

Euclidean space R4
q, namely

zµz̄µ = z̄µzµ = |zµ|2I2 (7.5)

(no sum over repeated µ) and together with xαα′
make up an alternative Poincaré-Birkhoff-

Witt basis of the algebra An, (i.e. ordered monomials in these variables make up a basis

of the vector space underlying An). Moreover, differentiating zαα′

µ and commuting it with

ξββ′
is like differentiating and commuting xαα′

:

∂αα′zββ′

µ = δβ
αδβ′

α′ +R̂βδ
αγR̂β′δ′

α′γ′z
γγ′

µ ∂δδ′ ,

zαα′

µ ξββ′
= R̂αβ

γδ R̂α′β′

γ′δ′ ξ
γγ′

zδδ′
µ .
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Therefore for any µ = 1, 2, . . . , n the replacement x → zµ in any true relation involving

x, ∂, ξ will generate a new true relation, which we shall label by adding the subscript µ to

the original one.

The solution φ searched for (5.9) is of the form

φ ≡ φn = 1 +
n∑

µ=1

ρ2
µ

1

|zµ|2
, (7.6)

namely a scalar “function” of the coordinates xi, of the instanton “sizes” ρµ and of

the “coordinates of their centers”. For this to be allowed we have further enlarged

An,Ω∗(An),Hn,DC(An) to extended algebras Aext
n ,Ω∗(Aext

n )Hext
n ,DC(Aext

n ) by adding as

generators inverse square roots 1/|zµ|, but we also add the inverses 1/φm, together with

corresponding commutation relations (see [21]) consistent with the ones given so far. The

basic ones can be obtained from the relations of section 6 by the replacements x → zµ,

ρ → ρµ, y → ∑ν
λ=µ+1 yλ, z → zν , ρz → ρν with ν > µ. By relations (3.8), (3.4)µ φ is har-

monic, exactly as in the classical case. In Theorem 1 of [21] we prove that Â = (D̂φ)φ−1

fulfills the selfduality equation (4.2)1. Explicitly, the field strength is

F̂ =
−q5

4q

[
ε−1(ξξ̄∂)Tε∂φ

] [
qφ−1+φ−1

q

]
+ q2ε−1(ξξ̄∂φ)Tε(∂φ)φ−1φ−1

q , (7.7)

where φq({zi}) := φ({qzi}). (This is a selfdual matrix because ξξ̄ is.)

Formally, as x → ∞ also zµ → ∞, φ → 1, and a simple inspection shows that Â → 0

as 1/|x|3, F̂ → 0 as 1/|x|4, exactly as in the case q = 1. Therefore F̂ F̂ decreases fast

enough at infinity for integrals like
∫

tr(F̂ F̂ ) to converge.

On the other hand, as zµ → 0 the function φ and therefore the gauge potential Â

are singular, i.e. formally diverge. We don’t know yet whether the singularity will cause

problems also in a proper functional-analytical treatment (this requires analyzing represen-

tations of the algebra). If this is the case then, as in the undeformed theory, the question

arises if this singularity is only due to the choice of a singular gauge and can be removed

by performing a suitable gauge transformation, or it really affects the field strength. We

address this issue semi-heuristically. We shall say that an element of our algebra is: 1. ana-

lytic in zµ if its power expansion has no poles in zµ, i.e. does not depend on 1/|zµ|; regular in

zµ if it formally keeps finite as zµ → 0, i.e. in its power expansion the dependence on 1/|zµ|
occurs only through zµ/|zµ|. Since such dependences might change upon changing the order

in which the variables z1, z2, . . . , zn, and possible extra variables 1/|z1−z2|, 1/|z1−z3|, . . . (if

necessary), are displayed, these conditions have to be met for any order. In the appendix

of [21] we show that performing the “singular gauge transformation” U2 defined by

U2 ≡ U2(z1, z2) :=
z̄1

|z1|
y2

|y2|
z̄2

|z2|
(7.8)

on Â2 we obtain a 2-istanton solution

A2 = U−1
2

(

ÂU2 + dU2

)

(7.9)
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analytic in both z1, z2; the corresponding selfdual field strength will be analytic as well.

The form of U2 exactly mimics the undeformed one of ref. [23, 36]. Of course, for this

to make sense, we have to further enlarge the algebras adding as a generator 1/|y2| with

consistent commutation relations; this is done in appendix A.1 of [21]. By generalization

of the undeformed reults [23, 36], we are led to the

Conjecture. Performing the singular gauge transformation Un recursively defined by

U0 = 12 and

Un ≡ Un(z1, . . . , zn) := Un−1(z1, . . . , zn−1)U
−1
n−1(y)

z̄n

|zn|
, (7.10)

with Um(y) the function of y1, . . . ym only defined by Um(y) := Um(z1−zn, . . . , zn−1−zn),

we finally obtain a regular n-istanton solution

A ≡ An = U−1
n

(

ÂUn + dUn

)

(7.11)

and a corresponding regular selfdual field strength, for any n.

Results for the n-antiinstanton solutions are obtained by the already mentioned

replacements. In particular, the singular ones Â are simply obtained replacing D̂ with D̂′

in (5.9).
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